75 research outputs found

    Zur Steuerung der Verwaltung in Unternehmungen

    Get PDF

    Six-month outcomes after individualized nutritional support during the hospital stay in medical patients at nutritional risk: Secondary analysis of a prospective randomized trial.

    Get PDF
    BACKGROUND Among medical inpatients at risk of malnutrition, the use of individualized nutritional support during the hospital stay was found to reduce complications and improve mortality at short-term. We evaluated clinical outcomes at 6-months follow-up. METHODS We randomly assigned 2028 patients to receive protocol-guided individualized nutritional support to reach protein and energy goals (intervention group) or hospital food as usual (control group) during the hospital stay. The intervention was discontinued at hospital discharge and further nutritional support was based on the discretion of the treating team. We had complete follow-up information of 1995 patients (98%), which were included in the final analysis. The primary endpoint was all-cause mortality at 6-months. Prespecified secondary end points included non-elective hospital readmissions, functional outcome and quality of life. RESULTS At 6-month, 231 of 994 (23.2%) intervention group patients had died compared to 246 of 999 (24.6%) control group patients, resulting in a hazard ratio for death of 0.90 (95%CI 0.76 to 1.08, p = 0.277). Compared to control patients, intervention group patients had similar rates of hospital readmission (27.3% vs. 27.6%, HR 1.00 (95%CI 0.84 to 1.18), p = 0.974), falls (11.2% vs. 10.9%, HR 0.96 (95%CI 0.72 to 1.27), p = 0.773) and similar quality of life and activities of daily living scores. INTERPRETATION While individualized nutritional support during the hospital stay significantly reduced short-term mortality, there was no legacy effect on longer term outcomes. Future trials should investigate whether continuation of nutritional support after hospital discharge reduces the high malnutrition-associated mortality rates in this vulnerable patient population. TRIAL REGISTRATION ClinicalTrials.gov number, NCT02517476

    Prevalence and phase variable expression status of two autotransporters, NalP and MspA, in carriage and disease isolates of Neisseria meningitidis.

    Get PDF
    Neisseria meningitidis is a human nasopharyngeal commensal capable of causing life-threatening septicemia and meningitis. Many meningococcal surface structures, including the autotransporter proteins NalP and MspA, are subject to phase variation (PV) due to the presence of homopolymeric tracts within their coding sequences. The functions of MspA are unknown. NalP proteolytically cleaves several surface-located virulence factors including the 4CMenB antigen NhbA. Therefore, NalP is a phase-variable regulator of the meningococcal outer membrane and secretome whose expression may reduce isolate susceptibility to 4CMenB-induced immune responses. To improve our understanding of the contributions of MspA and NalP to meningococcal-host interactions, their distribution and phase-variable expression status was studied in epidemiologically relevant samples, including 127 carriage and 514 invasive isolates representative of multiple clonal complexes and serogroups. Prevalence estimates of >98% and >88% were obtained for mspA and nalP, respectively, with no significant differences in their frequencies in disease versus carriage isolates. 16% of serogroup B (MenB) invasive isolates, predominately from clonal complexes ST-269 and ST-461, lacked nalP. Deletion of nalP often resulted from recombination events between flanking repetitive elements. PolyC tract lengths ranged from 6-15 bp in nalP and 6-14 bp in mspA. In an examination of PV status, 58.8% of carriage, and 40.1% of invasive nalP-positive MenB isolates were nalP phase ON. The frequency of this phenotype was not significantly different in serogroup Y (MenY) carriage strains, but was significantly higher in invasive MenY strains (86.3%; p<0.0001). Approximately 90% of MenB carriage and invasive isolates were mspA phase ON; significantly more than MenY carriage (32.7%) or invasive (13.7%) isolates. This differential expression resulted from different mode mspA tract lengths between the serogroups. Our data indicates a differential requirement for NalP and MspA expression in MenB and MenY strains and is a step towards understanding the contributions of phase-variable loci to meningococcal biology

    The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential

    Get PDF
    The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus. © 2012 Nature America, Inc. All rights reserved

    Versatile workflow for cell-type resolved transcriptional and epigenetic profiles from cryopreserved human lung

    Get PDF
    Complexity of lung microenvironment and changes in cellular composition during disease make it exceptionally hard to understand molecular mechanisms driving development of chronic lung diseases. Although recent advances in cell type–resolved approaches hold great promise for studying complex diseases, their implementation relies on local access to fresh tissue, as traditional tissue storage methods do not allow viable cell isolation. To overcome these hurdles, we developed a versatile workflow that allows storage of lung tissue with high viability, permits thorough sample quality check before cell isolation, and befits sequencing-based profiling. We demonstrate that cryopreservation enables isolation of multiple cell types from both healthy and diseased lungs. Basal cells from cryopreserved airways retain their differentiation ability, indicating that cellular identity is not altered by cryopreservation. Importantly, using RNA sequencing and EPIC Array, we show that gene expression and DNA methylation signatures are preserved upon cryopreservation, emphasizing the suitability of our workflow for omics profiling of lung cells. Moreover, we obtained high-quality single-cell RNA-sequencing data of cells from cryopreserved human lungs, demonstrating that cryopreservation empowers single-cell approaches. Overall, thanks to its simplicity, our workflow is well suited for prospective tissue collection by academic collaborators and biobanks, opening worldwide access to viable human tissue

    Two Cascaded and Extended Kalman Filters Combined with Sliding Mode Control for Sustainable Management of Marine Fish Stocks

    No full text
    This paper deals with a possible approach to controlling marine fish stocks using the prey‐predator model described by the Lotka‐Volterra equations. The control strategy is conceived using the sliding mode control (SMC) approach which, based on the Lyapunov theorem, offers the possibility to track desired functions, thus guaranteeing the stability of the controlled system. One of the most important aspects of this model is the identification of some parameters which characterizes the model. In this work two cascaded and Extended Kalman Filters (EKFs) are proposed to estimate them in order to be utilized in SMC. This approach can be used for sustainable management of marine fish stocks: through the developed algorithm, the appropriate number of active fishermen and the suitable period for fishing can be determined. Computer simulations validate the proposed approach

    Two cascaded and extended kalman filters combined with sliding mode control for sustainable management of marine fish stocks

    No full text
    This paper deals with a possible approach to controlling marine fish stocks using the prey‐predator model described by the Lotka‐Volterra equations. The control strategy is conceived using the sliding mode control (SMC) approach which, based on the Lyapunov theorem, offers the possibility to track desired functions, thus guaranteeing the stability of the controlled system. One of the most important aspects of this model is the identification of some parameters which characterizes the model. In this work two cascaded and Extended Kalman Filters (EKFs) are proposed to estimate them in order to be utilized in SMC. This approach can be used for sustainable management of marine fish stocks: through the developed algorithm, the appropriate number of active fishermen and the suitable period for fishing can be determined. Computer simulations validate the proposed approach
    • 

    corecore